Recall our counterexample to non-equivalence:
U={B1((0,0)),B1((0,1)),B1((1,0)),B1((1,1))}.
We seek the exact birth times of simplices. We need to find the area of intersection of 2, 3 and 4 balls.
Two balls (aligned):
64π−33≈1.288
Two balls (diagonal):
2π−1≈0.571
Three balls:
125π−63≈0.443
Four balls:
3π+3−33≈0.321
Now we need to find the area of union of 2,3, and 4 balls.
Two balls (aligned):
2μ(ball)−μ(∩2balls)=2π−64π−33=68π+33≈5.054
Two balls (diagonal):
2μ(ball)−μ(∩2balls)=2π−2π+1=23π+1≈0.571
Three balls:
3μ(ball)−2μ(∩balls aligned)−μ(∩balls diagonal)+μ(∩3balls)=3π−34π−33−2π+1+125π−63=1219π+63+12≈6.84
Four balls:
(https://math.stackexchange.com/questions/4115743/derive-an-expression-to-find-the-cardinality-of-the-union-of-4-sets)
4μ(B)−μ(B0,0∩B0,1)−μ(B0,0∩B1,0)−μ(B0,0∩B1,1)−μ(B0,1∩B1,0)−μ(B0,1∩B1,1)−μ(B1,0∩B1,1)+μ(B0,0∩B0,1∩B1,0)+μ(B0,0∩B0,1∩B1,1)+μ(B0,0∩B1,0∩B1,1)+μ(B0,1∩B1,0∩B1,1)−μ(B0,0∩B0,1∩B1,0∩B1,1)
which simplifies to
4μ(B)−4μ(B0,0∩B0,1)−2μ(B0,0∩B1,1)+4μ(3 balls)−μ(4 balls)
i.e.,
4π−4(64π−33)−2(2π−1)+4(125π−63)−3π+3−33=4π−616π−123−π+2+1220π−243−3π+3−33=1236π−1232π−243+1220π−243−124π+12−123=1219π+123+12≈7.706
Now we can compute the birth times:
1-simplices (aligned):
1−μ(∪)μ(∩)=1−68π+3364π−33=1−8π+334π−33=8π+334π+63≈0.756
1-simplices (diagonal):
1−μ(∪)μ(∩)=1−3π/2+1π/2−1=1−3π+2π−2=3π+22π+4≈0.9.
2-simplices:
1−μ(∪)μ(∩)=1−1219π+63+12125π−63=1−19π+63+125π−63=19π+63+1214π+123+12≈0.935
3-simplex:
1−μ(∪)μ(∩)=1−1219π+123+123π+3−33=1−19π+123+124π+12−123=19π+123+1215π+243≈0.959